

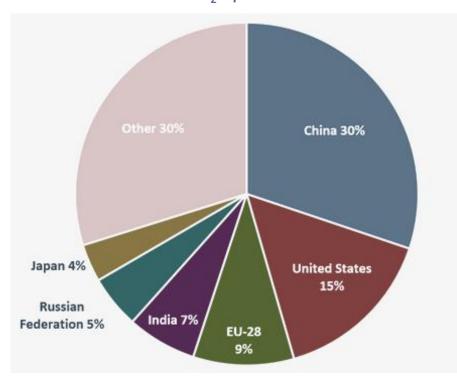
APPROACHES TO REDUCE GHG EMISSION FROM WASH SERVICES

Aditi Priya | PUI21011

Guide: Aasim Mansuri Aditi Dwivedi & Jigisha Jaiswal

Masters in Urban Infrastructure Planning Directed Research Project – 2023

CWAS CENTER FOR WATER AND SANITATION

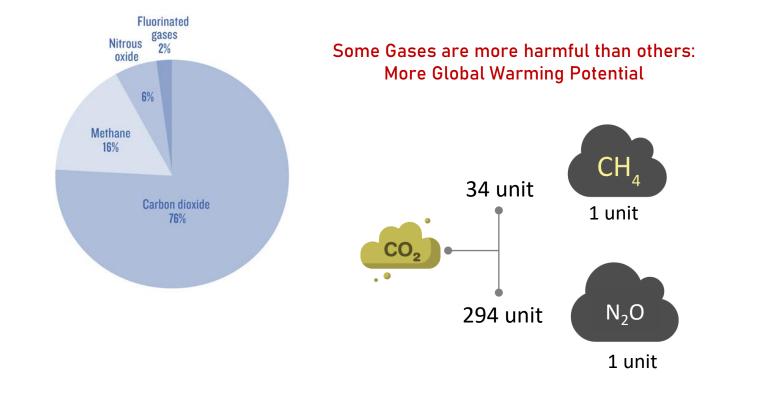


THE EARTH IS HEATING UP !

Temperature Rise, GHG Emissions 6 1.2 1 CO2 Emissions (metric tons per capita) 5 0.8 Change (°C) 4 0.6 0.4 3 ā 0.2 Temper 2 0 -0.2 -0.4 0 2010 1960 1970 1980 1990 2000 Year ——CO₂ Emissions GHG emissions are directly

linked to Global Warming

49 Billion Tonnes MT CO₂eq in 2020



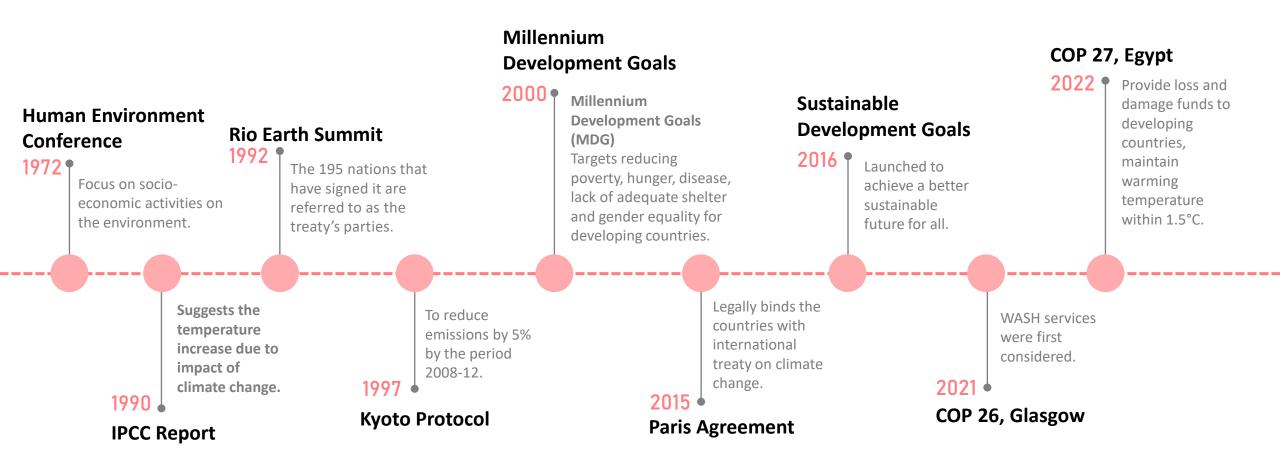
India is one of the top 5 countries emitting the highest GHG.

THE EARTH IS HEATING UP !

Accelerated Greenhouse Effect

"Accelerated Greenhouse gases effect is the result of human activity and industrialization leading to GHG emission.

Methane and Nitrous Oxide are more harmful than Carbon Dioxide. However, the life span of CO₂ is more than other gases.


CO,

34 un

GLOBAL CLIMATE DISCOURSE

WASH SECTOR FOR THE FIRST TIME IN COP 26

NDIA'S INITIATIVES FOR WaSH

2003

CDM

National Clean Development Mechanism (CDM) Project Approval Authority that allow committed countries to implement emission reduction projects.

Setting up of Indian Renewable Energy Development Authority.

Coal Cess – carbon tax increased from Rs 50 per ton in 2010 to Rs 400 in 2017

2007, 2008

NAMA

National Action Plan on Climate Change (NAPCC) The climate Program was launched, and its

implementation would take place through eight National Missions.

2010

COP 15, Copenhagen

India voluntarily offered to reduce the emissions intensity of its GDP by 20–25% by 2020 compared to 2005 levels.

2015

Swachh Bharat Mission

To prioritize sanitation and to accelerate

- sanitation coverage.
- To ensure that open defecation-free
- behaviors are sustained.Solid and Liquid Waste
 - Management.
- Circular Economy.

2015

NDC for Paris Agreement

30-35% Emission Reduction

40% Electricity Power from non-fossil source

2.5-3 billion ton Carbon Sink through plantation

Net Zero 2070

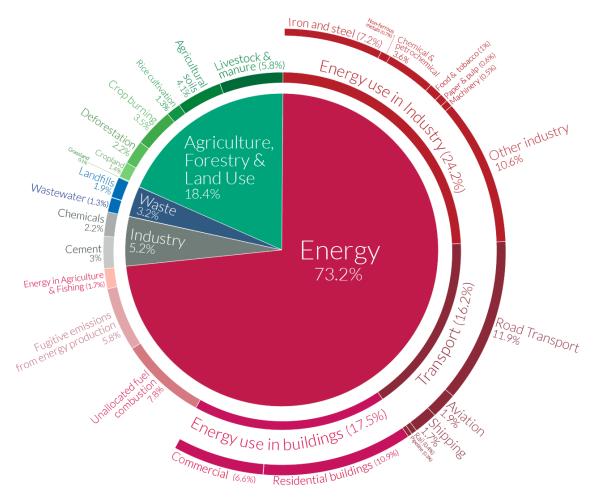
Upgradation in NDC, 2021

45% Emission Reduction

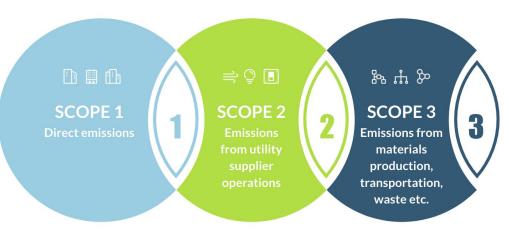
50% Electricity Power from a non-fossil source

2020, 2021, 2022

India made an announcement of new climate action targets at the COP-26 summit in Glasgow.


National Electric Mobility Mission Plan 2020.

AMRUT 2.0


SBM 2.0

EMISSIONS FROM THE WASTE SECTOR IMPACT THE ENERGY SECTOR

GLOBAL GHG EMISSION

OurWorldinData.org - Research and data to make progress against the world's largest problems. Source: Climate Watch, the World Resources Institute (2020). Licensed under CC-BY by the author Hannah Ritchie (2020). Focusing of the Waste sector, because energy consumption **impacts the energy sector,** the highest GHG emitting sector contributing to global GHG emissions.

DIRECT EMISSIONS (SCOPE 1)

Emissions by sanitation value chain. Methane, Nitrous Oxide

INDIRECT EMISSIONS (SCOPE 2)

Emission through the fuel and generation of electricity, which is used in the water and wastewater service chain. Carbon Dioxide CO2.

> INDIRECT EMISSIONS (SCOPE 3) Embodied Energy Carbon Dioxide CO2.

AIM & OBJECTIVE

AIM

To mitigate direct and indirect GHG emissions from the WASH service chain.

OBJECTIVES

- 1. Understanding the contribution of urban WASH services to GHG emissions in the context of global emissions.
- 2. Understanding the extent of emissions from all the components of the value chains of water and sanitation in a selected city.
- 3. To Identify technical options of mitigation and adaptation approaches in WASH services of the selected city.

SCOPE

The study looks into GHG emissions in water and sanitation service chains.

The study focuses on reducing GHG emissions from the municipal services side.

LIMITATION

The study does not extend to Solid Waste Management and Climate adaptive infrastructure.

Calculation of Nitrous Oxide.

Emissions from the Water User side.

METHODOLOGY

1

Establish the contribution of urban WASH services to GHG emissions in context of global emissions

Understanding Global & national GHG emissions and WASH

Understanding Global AND NATIONAL Initiatives to reduce GHG emission

Reviewing the sectors responsible for GHG emissions.

2

Understanding the extent of emissions from all the components of the value chains of water and sanitation in a selected city

City selection

Assessing city profile in terms of its WASH services

Calculating direct and indirect emissions across the service chain based on filed assessment

3

To Identify technical options of mitigation and adaptation approaches in WASH services pf the selected city

Reviewing the current initiatives and projects in the city to reduce GHG emission

Assessing the possibility of potential technical recommendations to reduce emissions

EMISSIONS IN THE WATER SUPPLY CHAIN :

Due To Distant Sources, Polluted Water, and Lower Pump Efficiency

No Direct Emission

•

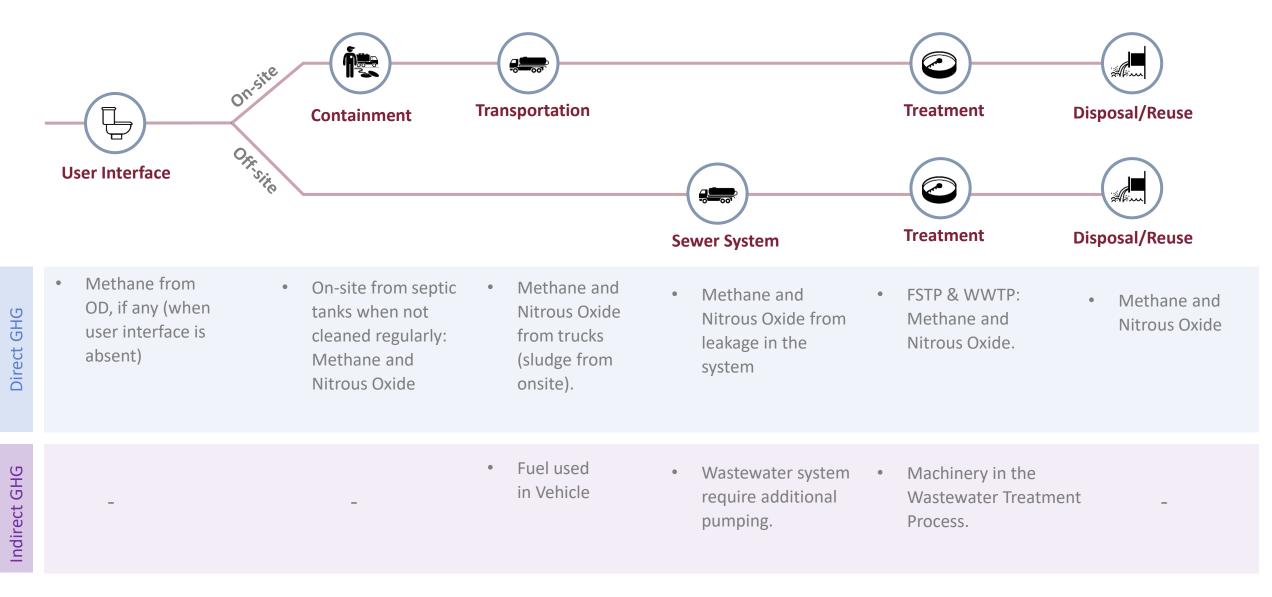
• Extraction from ground.

source.

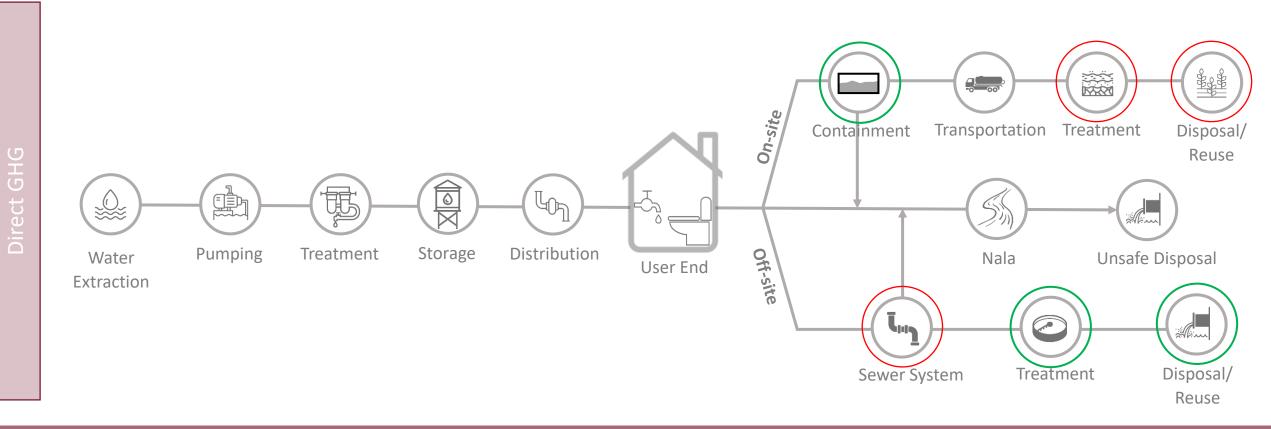
Pumping water

from distance

source or local


- Pumping water from source to treatment plant.
- Machinery in the Water Treatment Process.
- Higher NRW higher energy
- Pumping water from WTP's GSR to different ESRs of the city.
- Water from ESRs to distribution system sometimes require additional pumping.
- Higher NRW higher energy

 Ground water extraction at households.


•

Residential water treatment and heating adds to the global energy consumption

SANITATION VALUE CHAIN EMITS BOTH DIRECT & INDIRECT GHG EMISSIONS FROM

UNDERESTIMATED WASH VALUE CHAIN

The whole complex system of the sanitation value chain is underestimated in global GHG. While, the other studies shows there are emissions from these components as well.

Source: 1. Nyola A., Predes M., Methane correction factors for estimating emissions from aerobic wastewater treatment facilities based on field data in Mexico and on literature review 2. Johson J., Zakaria F., Nkurunziza a., Way C., Camargo-Valero M., Evans B., April 2022, Whole system analysis reveals high greenhouse gas emissions from citywide sanitation in Kampala, Uganda 3. IPCC

SIGNIFICANT DIRECT GHG EMITS FROM WASTEWATER

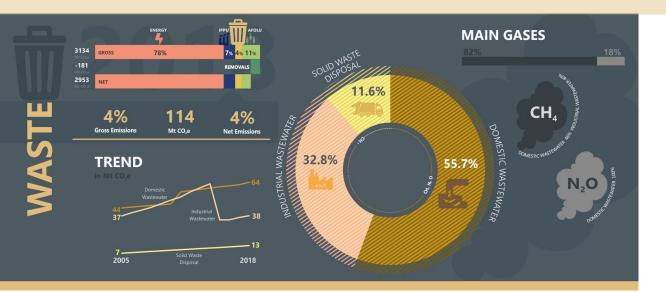
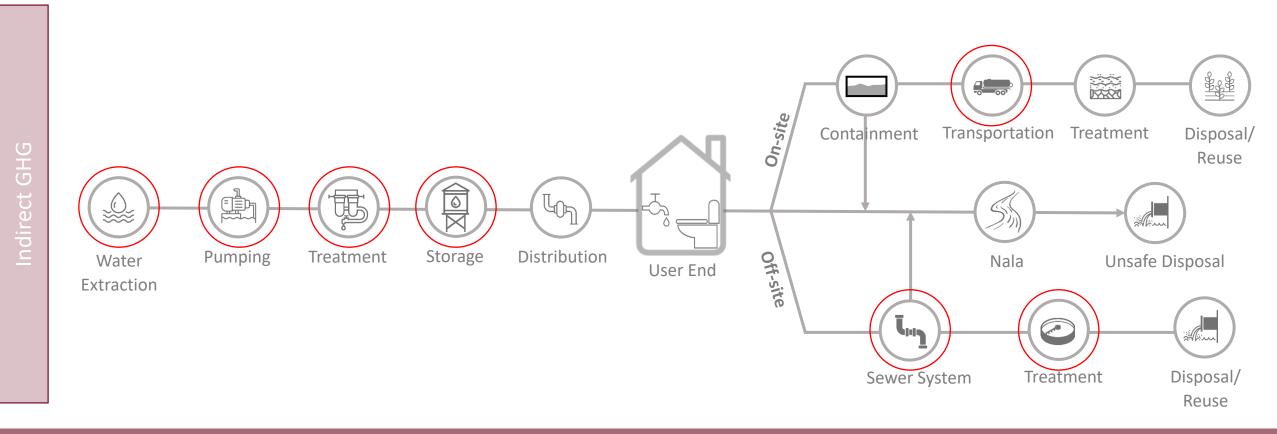


Table 5 Principal sources of greenhouse gas emissions from whole-chain sanitation systems (a) onsite systems, (b) offsite systems in Kampala.

Emission category ^a	Total emissions by category	(tCO ₂ e)	
	(1) Containment	(2) Emptying/ emptying and transport	(3) Treatment
(a) Onsite systems (pit latrine	es, septic tanks and containers with r	oad based transport)	
Direct (D)	Contained: 87,950	Delivered: 0	Treated: 26,650
	Not contained: 8,036	Not delivered: 2572	Not treated: 6429
Operational (O)	Contained: 0	Delivered: 556	All treatment: 0
	Not contained: 0	Not delivered: 0	
Embedded carbon (E)	All systems: 4,262	All trucks: 0	Treated: 59
			Not treated: 0
(b) Offsite systems (with sew	er based transport)		
Direct (D)	Contained: 0	Delivered: 0	Treated: 29,629
	Not contained: 0	Not delivered: 11,572	Not treated: 6429
Operational (O)	Contained: 0	Delivered: 41	Treated: 2909
	Not contained: 0	Not delivered: 0	Not treated: 0
Embedded carbon (E)	All systems: 0	All sewers: 2011	Treated: 3
			Not treated 0

GHG Platform India:

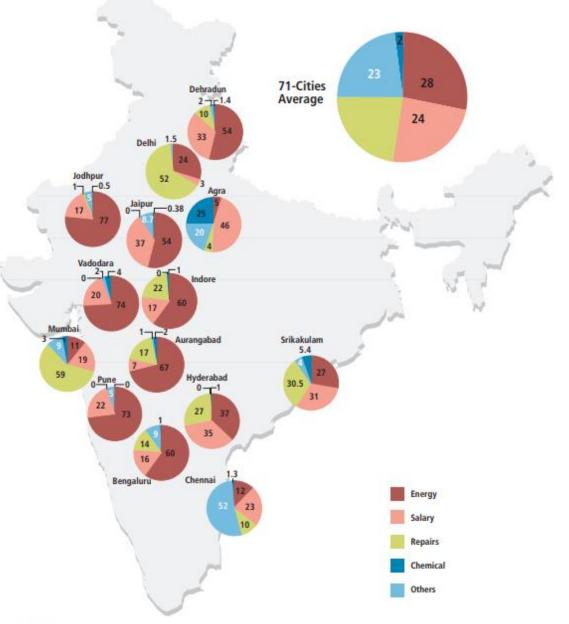

- The GHG emission from Domestic Wastewater is more than others
- The trend shows the linear growth of GHG from domestic WW

Kampala Case:

- Significant amount of methane from onsite sanitation system: containment, emptying and transportation.
- Therefore, to study the whole value chain is important assess the overall GHG from the chain.

Source: 1. GHG Platform India, https://www.ghgplatform-india.org/economy-wide/#, 2. Johson J., Zakaria F., Nkurunziza a., Way C., Camargo-Valero M., Evans B., April 2022, Whole system analysis reveals high greenhouse gas emissions from citywide sanitation in Kampala, Uganda, https://doi.org/10.1038/s43247-022-00413-w

UNDERESTIMATED WASH VALUE CHAIN



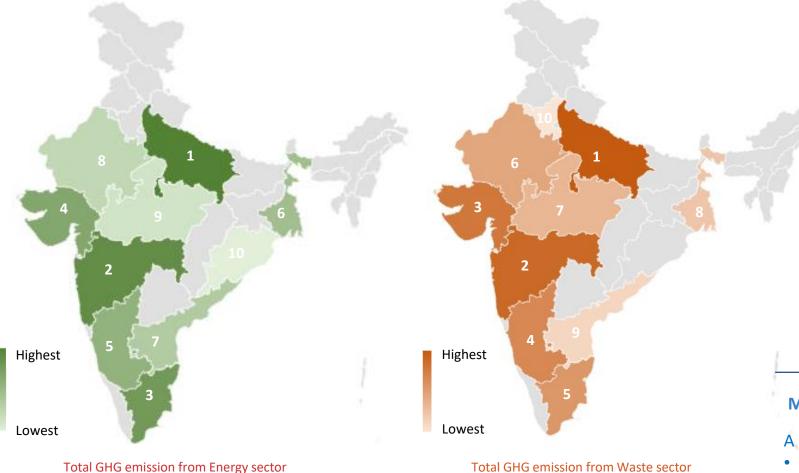
The global emissions from energy sector includes electricity production and electricity use in buildings and industries but underestimate consumption from WASH.

Source: 1. Nyola A., Predes M., Methane correction factors for estimating emissions from aerobic wastewater treatment facilities based on field data in Mexico and on literature review 2. Johson J., Zakaria F., Nkurunziza a., Way C., Camargo-Valero M., Evans B., April 2022, Whole system analysis reveals high greenhouse gas emissions from citywide sanitation in Kampala, Uganda 3. IPCC

LBs CONSUMING HIGH ENERGY IN WATERWORKS - INDIRECT EMISSIONS

- 40% to 60% of the power consumed by a municipal corporation is spent towards the operation of water/sewage pumping.
- 10-20% of the total revenue expenditure in terms of electricity cost, according to International Finance Corporation (IFC) (IFC, 2007).
- Leakages or transmission losses can lead to an increase in the cost of the water supply by up to 11 percent in metro cities, 5 percent for Class I cities, and 4 percent for Class II and III cities

Source: 1. Sharma K V, 2012, Energy conservation opportunities in municipal water supply systems: a case study, TERI 2. Rohilla S., Kumar P., Matto M., and Sharda C., 2017, Mainstreaming Energy Efficiency In Urban Water And Wastewater Management In The Wake Of Climate Change, CSE


Note: All figures are in percentage.

Therefore, this study tries to prove the certainty of the established problem statement about emissions from WASH services with a case city

MAHARSHTRA BEING 2ND HIGHEST GHG EMISSION IN BOTH ENERGY & WASTE SECTOR

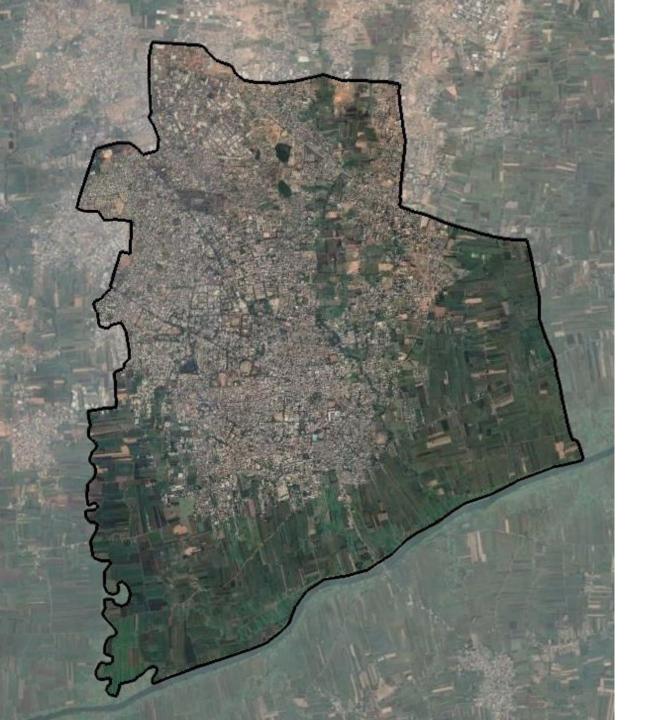
TOP 10 STATE GHG EMISSION - ENERGY AND WASTE

Environment and Climate Department of the Government of Maharashtra.

Government of Maharashtra.

UN Environment Program (UNEP)

Majhi Vasundhara


- Solid waste management
- Water conservation
- Rainwater harvesting
- Treatment of wastewater
- Promotion of Renewable energy

MEDA – Maharashtra Energy Development Agency

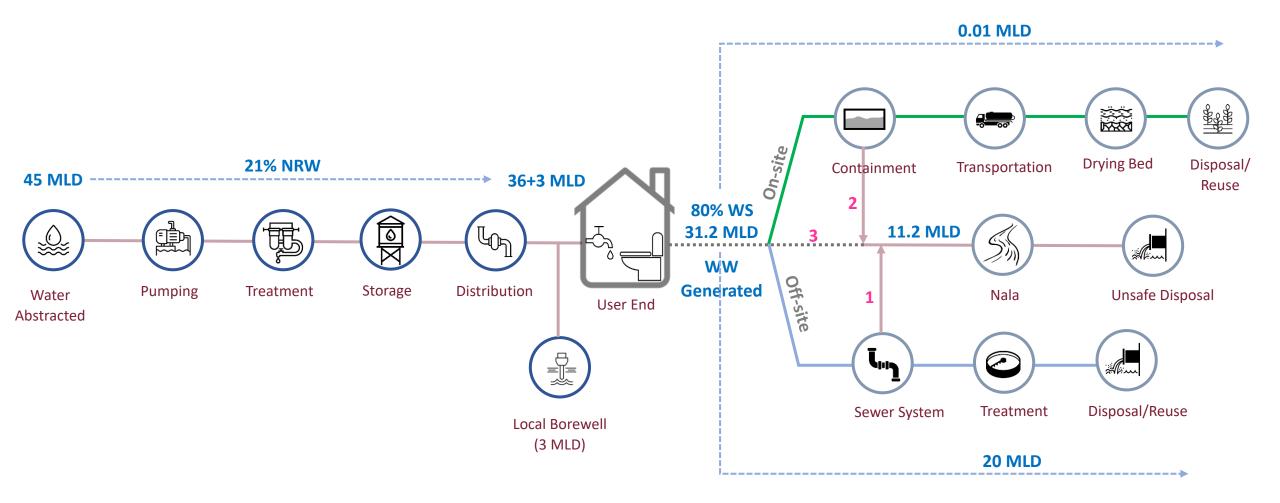
A state nodal agency under the umbrella of the MNRE.

- undertake the development of renewable energy
- facilitate energy conservation

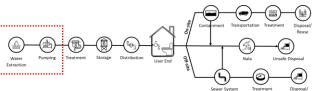
	Karad	Ichalkaranji	Vita
Population	~ 89 Thousand	~ 3.6 Lakhs	57 Thousand
Area	10.5 sqkm	29.9 sqkm	55 sqkm
Source of water	Surface water	Surface + Ground water	Ground water
MLD stp	12.5	20	NA (on-site system)
LPCD (user end)	140	101	96
Connection	92% sewer connection	43% sewer connection	100% On Site
	·		

ICHALKARANJI Maharashtra

City Area **29.9 sq. km**


District Kolhapur

Population 3,68,885


Household 57,403

S Economy Industrial Dominant City

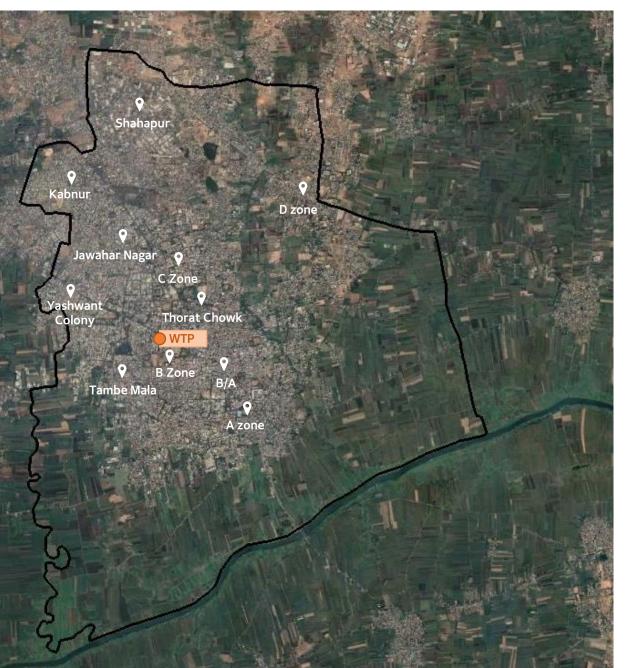
CHALKARANJI'S WASH VALUE CHAIN

WATER SUPLLY SYSTEM in ICHALKARANJI

Water Source: 45 MLD of water is drawn from the main source

PANCHGANGA RIVER – 3.6 km away

Headwork - Panchganga Nadi ghat


KRISHNA RIVER – 18 km away

60 Lakh units in year 21-22

WATER SUPLLY SYSTEM in ICHALKARANJI

Water Treatment Pla	nt, Pumpii	<u>were</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>vere</u> <u>v</u>
45 MLD WATER SUPPLY	\Rightarrow 🛛 To ES	Rs (16 ESRs and 📄 User End 11 zones)
Pump Efficiency for ESRs		
Shahapur	72.9%	
Jawahar Nagar	68.45%	
A Zone	63.6%	Average efficiency = 58.3%
B Zone	78.1%	Average actual flow rate= 515
C Zone	65.7%	Average measured flow rate= 402
D Zone	54.6%	(-22%) Flow m3/h has decreased
B/A Zone	54.6%	from the actual flow rate of the
Yashwant Colony	46.04%	pumps
Tambe Mala	54.7%	
Thorat Chowk	66.8%	
Kabnur	64.2%	

Source: Ichalkaranji Municipal Corporation: Water Works Department

CALCULATION METHODOLOGY – Water Supply

GHG emission (kg CO2eq) = Energy consumption x Emission factor of the grid

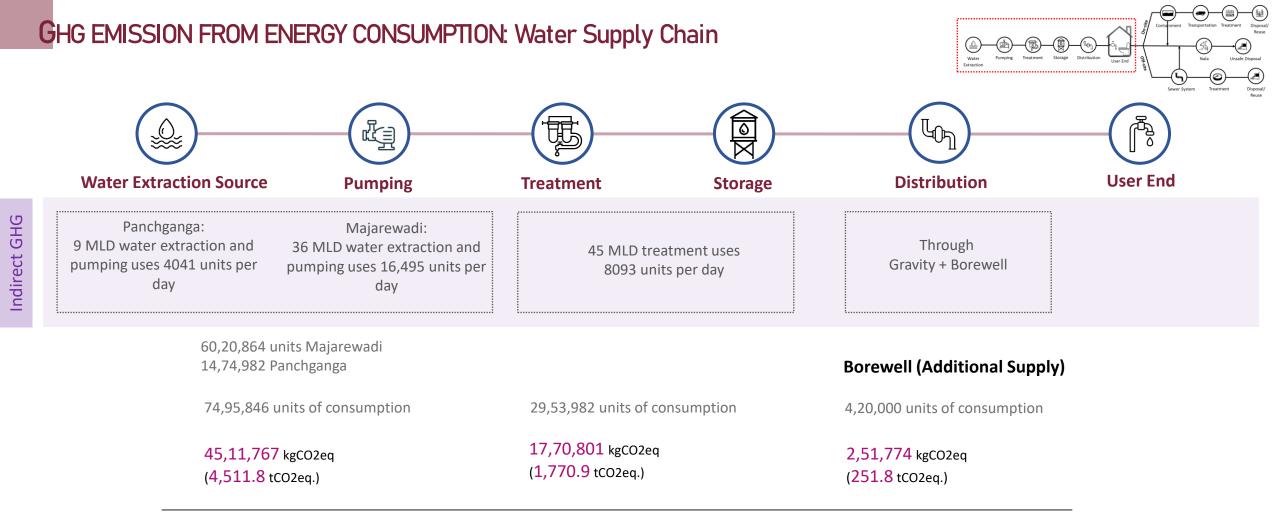
Emission factor:

Coal = 0.85 (70%), Hydro = 0.025 (30%)

Maharashtra Grid has electricity through both coal and hydrobased production.

GHG calculation for truck: GHG emission (kg CO2eq) = Litres of petrol used x Emission Factor of petrol truck

Emission factor:


Petrol Based Vehicle = 2.3Petrol Used per trip = 2.6 litres (as per Health department of IMC 250 rs per trip) IPCC formula for calculating GHG emissions = (U x T x EF) x (TOW-S)-R

- 1 TOW = Volume of wastewater generated x BOD
- **2** BOD wastewater, sludge
- **3** B0 = Maximum Methane Producing factor
- **4** MCF = Methane Correction factor (based on existing situation)
- **5** Emission Factor = (B0 x MCF)
- **6** S = Sludge Removed
- **7** U = Population fraction
- 8 T = Degree of utilisation

 $*CO_2eq = CH_4 X 34$ (for converting methane to carbon dioxide equivalent)

Source: 1. CO2 Baseline for Database for Indian Power Sector, 2018, Central Electricity Authority, Gol 2. Telang S., 2011, Carbon Footprint Calculation, 3. Wastewater Treatment and Discharge, 2006 IPCC Guidelines for National Greenhouse Gas Inventories


Direct GHG

Total Indirect GHG emission = 6,534 tCO2eq per year

*All data is of FY 2021-22 *Coal = 0.85 (70%), Hydro = 0.025 (30%)

SANITATION VALUE CHAIN in ICHALKARANJI – Onsite System

Water Pumping Treatment Storage Distribution User End Storage System Treatment Transportation Treatment Disposal

Containment: Direct Emissions from Septic tank

Dependency on Septic Tanks = 57%

No. of Septic Tanks = 32979

Transportation: Indirect Emissions Use of Fuel from Desludging trucks

Irregular Desludging

Expense of petrol per trip

No. of trips 3

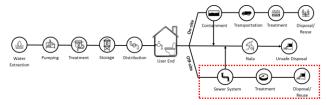
No. of Septic Tanks emptied 3-4

No. of days yearly operation 6

The maximum distance of households with the onsite system from STP for sludge transportation is 5-6km.

Treatment and Disposal: Direct Emission

• The sludge is directly put on the drying bed in STP.


Rs 250

Sludge thickener not working.

Source: Ichalkaranji Municipal Corporation: Water Works Department, Health Department

SANITATION VALUE CHAIN in ICHALKARANJI – Offsite system

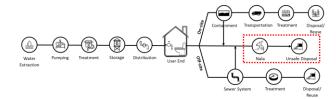
Sewer System: Indirect Emission

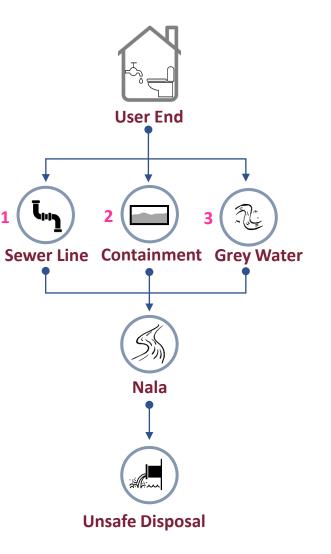
No. of Household with sewer connection = 43% The annual energy consumption of the station = 4 lakh units

Treatment: Direct and Indirect Emissions

Sewage Treatment Plant Capacity: 20 MLD, STP runs in full capacity

Wastewater generated 80% of 36+3 MLD = 31.2 MLD, a gap of 11.2 MLD. The clarifier bridge isn't working due to which sludge collection is an issue.


The sludge thickener not working.


Disposal:

After Treatment, approximately, 15 MLD is reused in agriculture fields. The rest goes into the river. Industries are not willing to buy treated wastewater.

SANITATION VALUE CHAIN in ICHALKARANJI – Unsafe Disposal

- 1 Leakage, overpass from sewer flows to nalas.
- 2 Overflow from septic tanks flows to open drains
- 3 Grey water from households flows through open drain

11.2 MLD

CALCULATION METHODOLOGY – Sanitation

GHG emission (kg CO2eq) = Energy consumption x Emission factor of the grid

Emission factor:

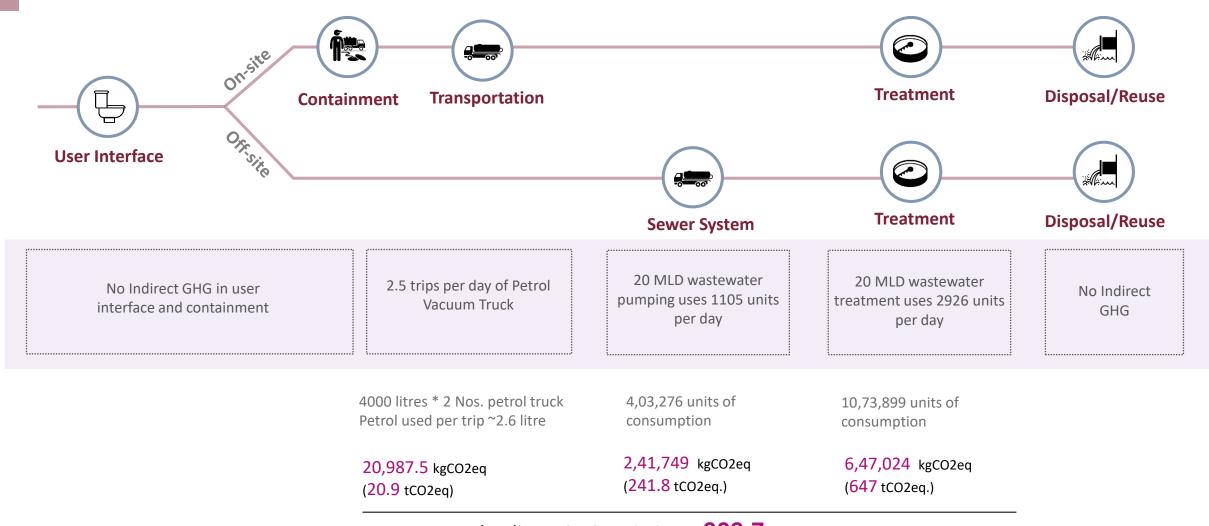
Coal = 0.85 (70%), Hydro = 0.025 (30%)

Maharashtra Grid has electricity through both coal and hydrobased production.

GHG calculation for truck: GHG emission (kg CO2eq) = Litres of petrol used x Emission Factor of petrol truck

Emission factor:

Petrol Based Vehicle = 2.3 Petrol Used per trip = 2.6 litres (as per Health department of IMC 250 rs per trip) IPCC formula for calculating GHG emissions (CH₄) = (U x T x EF) x (TOW-S)-R


- 1 TOW = Volume of wastewater generated x BOD
- **2** BOD wastewater, sludge
- **3** B0 = Maximum Methane Producing factor
- **4** MCF = Methane Correction factor (based on existing situation)
- **5** Emission Factor = (B0 x MCF)
- **6** S = Sludge Removed
- **7** U = Population fraction
- 8 T = Degree of utilisation

 $*CO_2eq = CH_4 X 34$ (for converting methane to carbon dioxide equivalent)

Source: 1. CO2 Baseline for Database for Indian Power Sector, 2018, Central Electricity Authority, Gol 2. Telang S., 2011, Carbon Footprint Calculation, 3. Wastewater Treatment and Discharge, 2006 IPCC Guidelines for National Greenhouse Gas Inventories

Direct GHG

GHG EMISSION FROM ENERGY CONSUMPTION: Sanitation Value Chain

Total Indirect GHG emission = 909.7 tCO2eq per year

*All data is of FY 2021-22

Indirect GHG

Source: 1. Mathew J., 2015, Green Freight Math: How to Calculate Emissions for a Truck Move, Environmental Business Fund 2. CO2 Baseline for Database for Indian Power Sector, 2018, Central Electricity Authority, Gol 3. Telang S., 2011, Carbon Footprint Calculation

CALCULATION METHODOLOGY – Sanitation

GHG emission (kg CO2eq) = Energy consumption x Emission factor of the grid

Emission factor:

Coal = 0.85 (70%), Hydro = 0.025 (30%)

Maharashtra Grid has electricity through both coal and hydrobased production.

GHG calculation for truck: GHG emission (kg CO2eq) = Litres of petrol used x Emission Factor of petrol truck

Emission factor:

Petrol Based Vehicle = 2.3Petrol Used per trip = 2.6 litres (as per Health department of IMC 250 rs per trip) IPCC formula for calculating GHG emissions = (U x T x EF) x (TOW-S)-R

- 1 TOW = Volume of wastewater generated x BOD
- 2 BOD wastewater, sludge
- 3 B0 = Maximum Methane Producing factor
- **4** MCF = Methane Correction factor (based on existing situation)
- 5 Emission Factor = (B0 x MCF)
- 6 S = Sludge Removed
- 7 U = Population fraction
- 8 T = Degree of utilisation

 $*CO_2eq = CH_4 X 34$ (for converting methane to carbon dioxide equivalent)

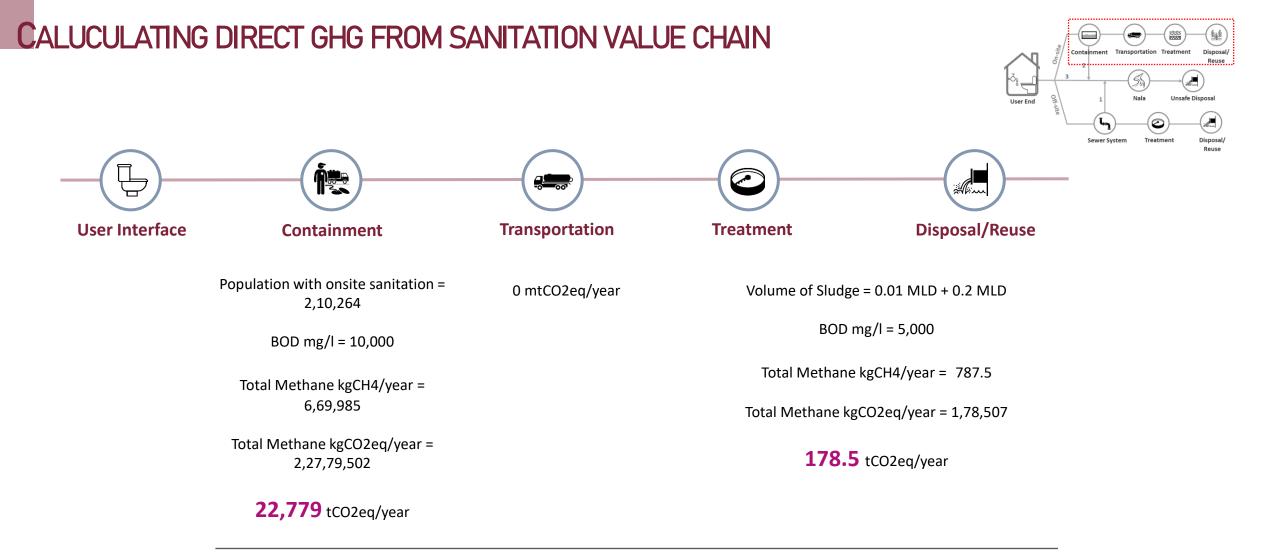
Source: 1. CO2 Baseline for Database for Indian Power Sector, 2018, Central Electricity Authority, Gol 2. Telang S., 2011, Carbon Footprint Calculation, 3. Wastewater Treatment and Discharge, 2006 IPCC Guidelines for National Greenhouse Gas Inventories

Direct GHG

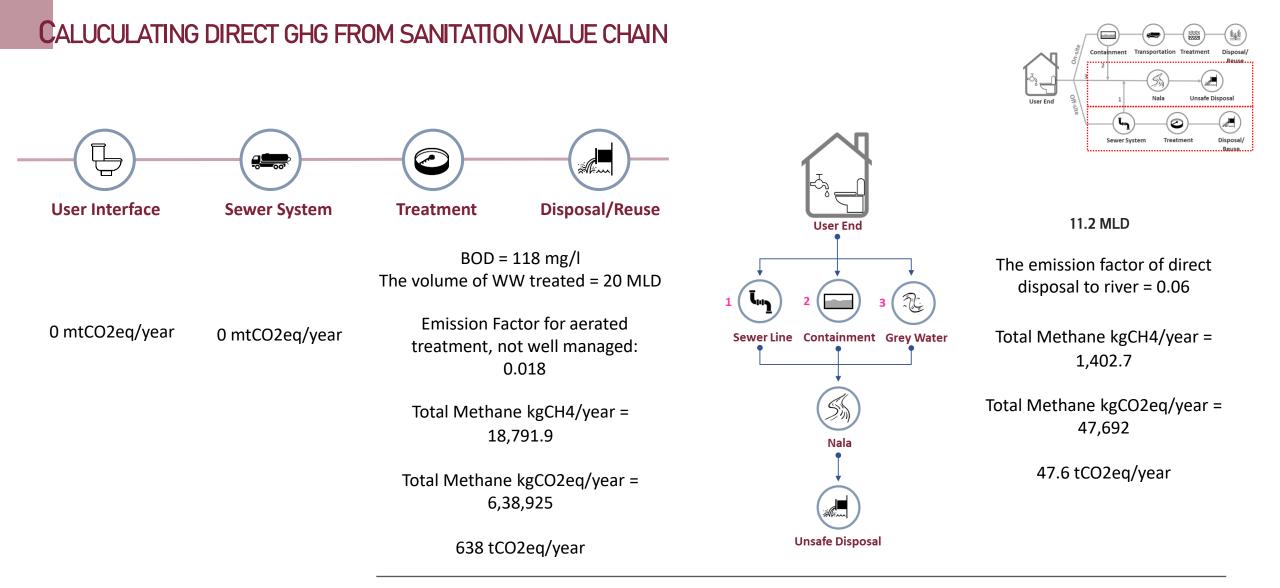
ASSUMPTIONS FOR CALCULATING DIRECT GHG FROM SANITATION VALUE CHAIN

Components of Value Chain	Quantity	BOD (mg/l)	Final BOD (mg/l)	MCF	т	U	Comments
Pathway 1:	Onsite						
Containmnet	80 LCPD*Pop	10,000	5,000	1 or 0.6	0.14		Max. MCF because of irregular desludging and reduced efficiency of septic tanks
Transportation			0			0.23	Because the distance of travel from septic tanks to STP is very less.
Treatment at drying bed	0.01 MLD+0.2	5,000	25	0.5	0.03		The Sludge thickener isn't working, resulting in higher emission due more
Disposal							days consumed for drying.

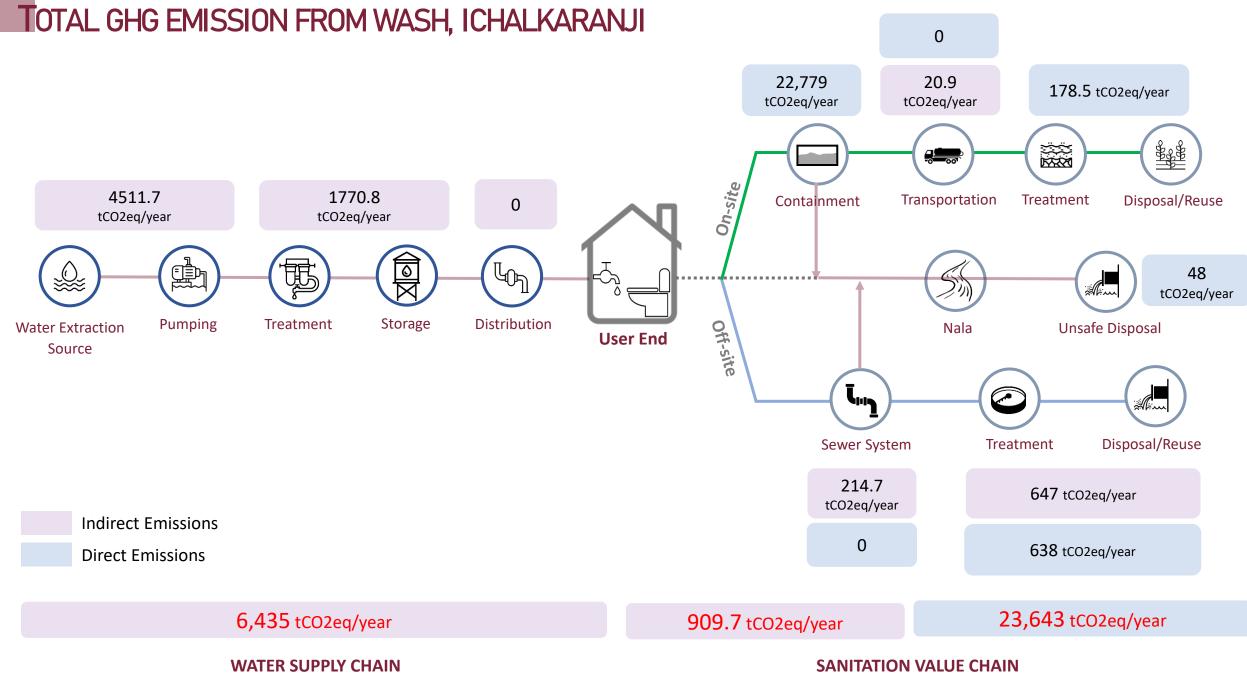
The quality test of effluent in onsite sanitation is not done by IMC.

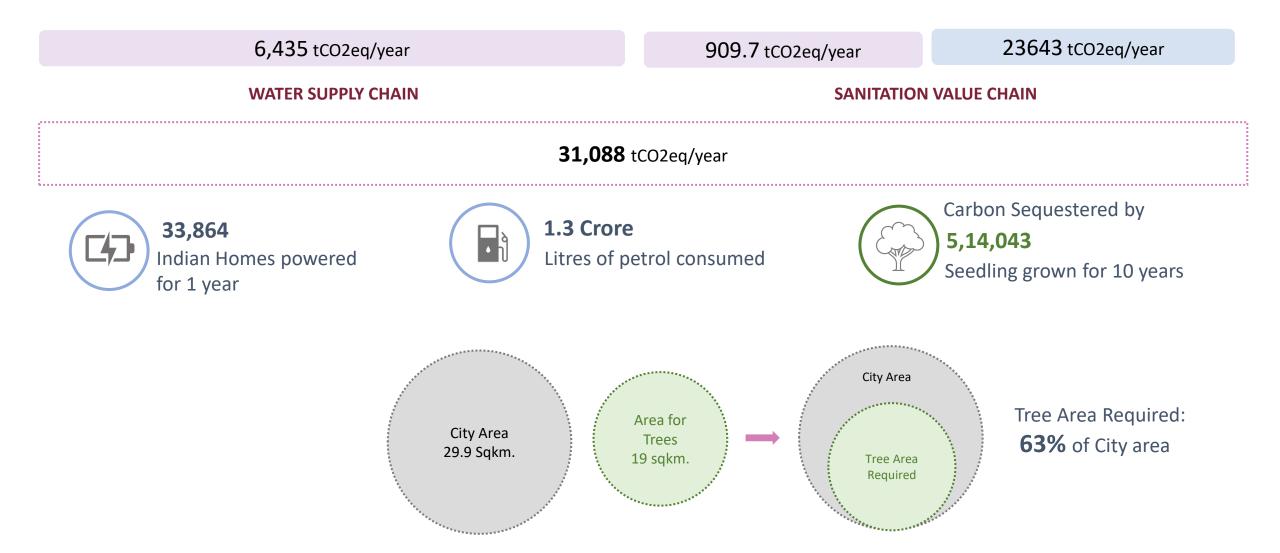

Pathway 2:	Offsite					I		•
Sewer System	31.2 MLD	118	0	0.5	0.53	0.23	Due to overload in STP there is stagnancy in sewer system	Insu
STP	20 MI D	110	C Q	0.2	0.52			mar
Disposal	20 MLD	118	68	0.3	0.53		Overloaded and not managed STP	

Pathway 3: Unsafe	e Disposal:Efflu	ent from on	site, overpassin	g from sewer	line, Grey wa	ater		•
Disposal	11.2 MLD	118	0	0.1	0.2	0.23	With organic matter in the drain, it emits methane	Unsafe Dis


nsufficient capacity and not well nanaged STP

Unsafe Disposal from septic tanks


Source: 1. Wastewater Treatment and Discharge, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2. Guidelines for Septage Management in Bihar, 2018, Govt. of Bihar 3. Rohilla A., Luthra B., Bhatnagar A., Matto M. and Bhonde U. 2017, Septage Management: A Practitioner's Guide, Centre for Science and Environment, New Delhi, 4. Reduction of Sludge Production in Wastewater Treatment Plants, IWA


Total direct GHG = 22,957 tCO2eq per year

Total direct GHG = **686** tCO2eq per year

GHG EQUIVALENCE

KEY ISSUES AND CHALLENGES

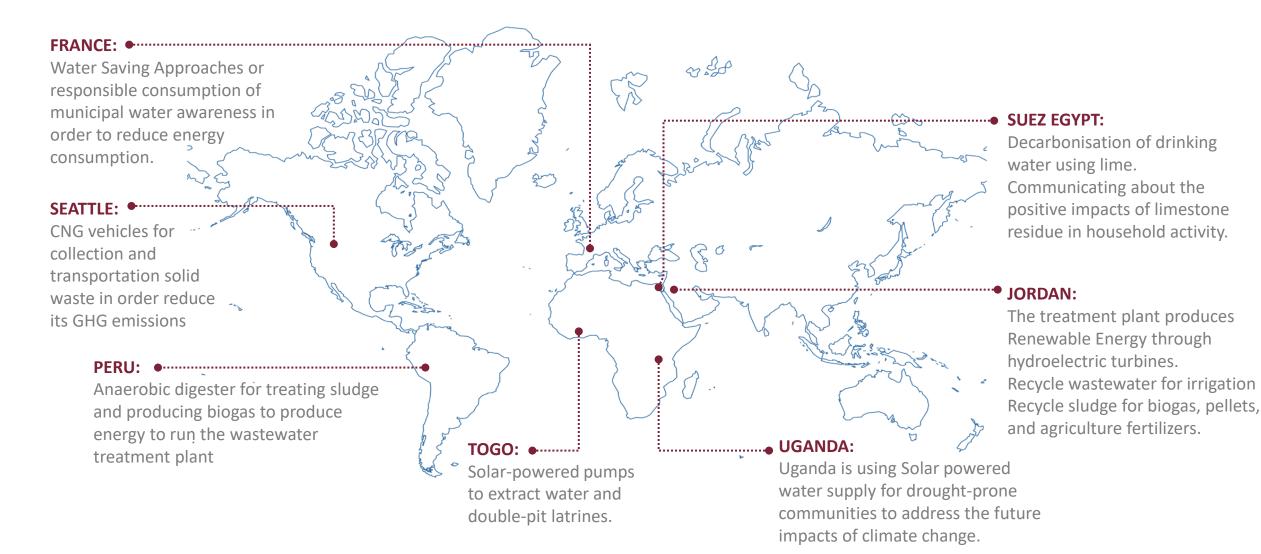
lssues

infrastructure

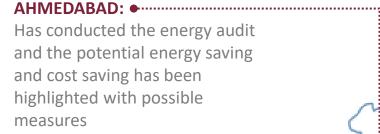
- Inadequate STP Capacity
- Not maintained STP machinery
- Low energy efficiency of pumps
- Water pumped from long distance
- Fossil Fuel based suction trucks

governance

- No energy audits
- Irregular Desludging
- No monitoring of water quality after treatment


Effects

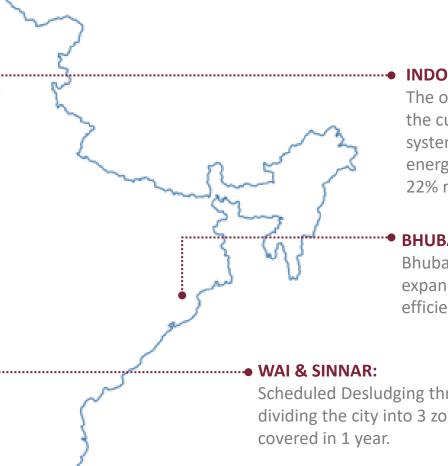
environmental
 eded STP disposal of Emissions from septic tanks Emissions due to energy consumption Emissions from fuel-based vacuum trucks


financial

• High electricity bills and petrol bills

NTERNATIONAL CASE STUDIES

NATIONAL CASE STUDIES



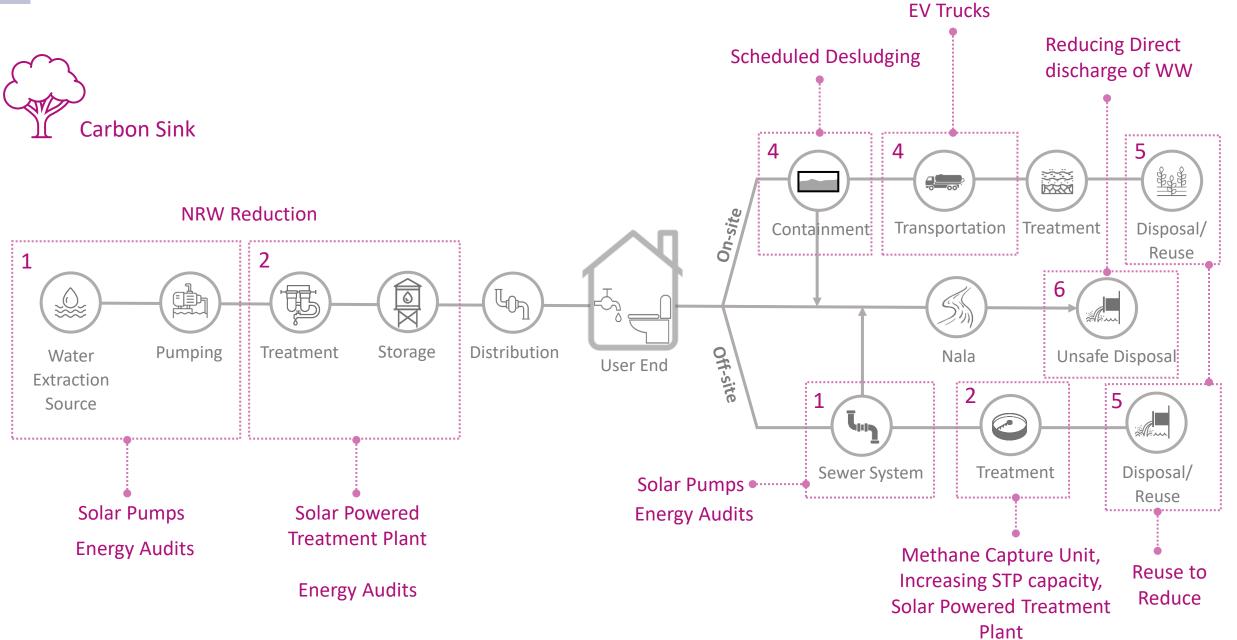
RAJKOT: •

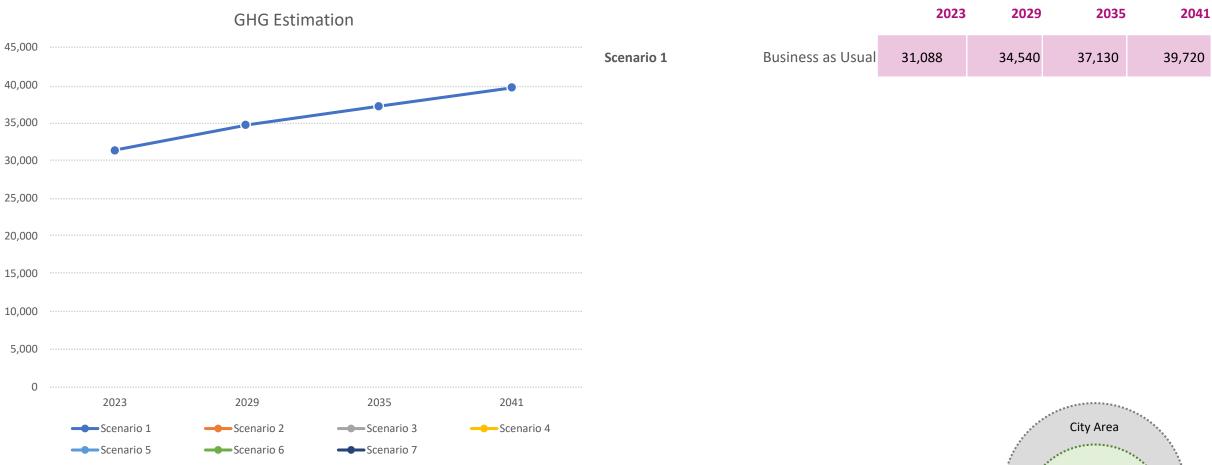
Solar Powered Water Treatment and Waste treatment Plant for GHG reduction.

SURAT:

Surat has established an NRW cell to take up dedicated actions such as leakage mapping

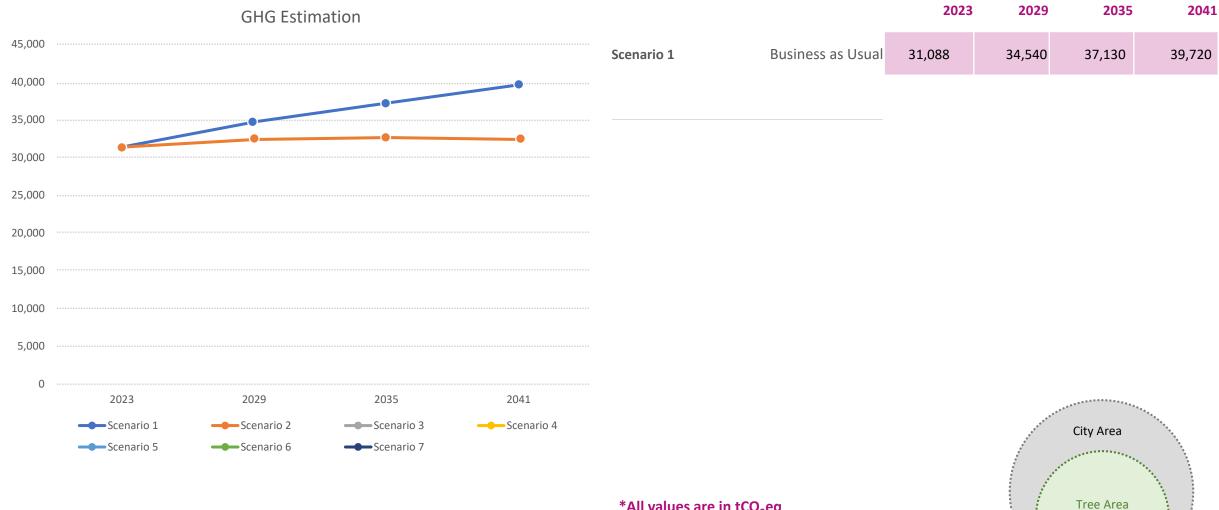
INDORE:


The old electromechanical equipment of the current wastewater management system has been replaced with a solar energy system, which has assisted in a 22% reduction in energy usage.


BHUBANESHWAR:

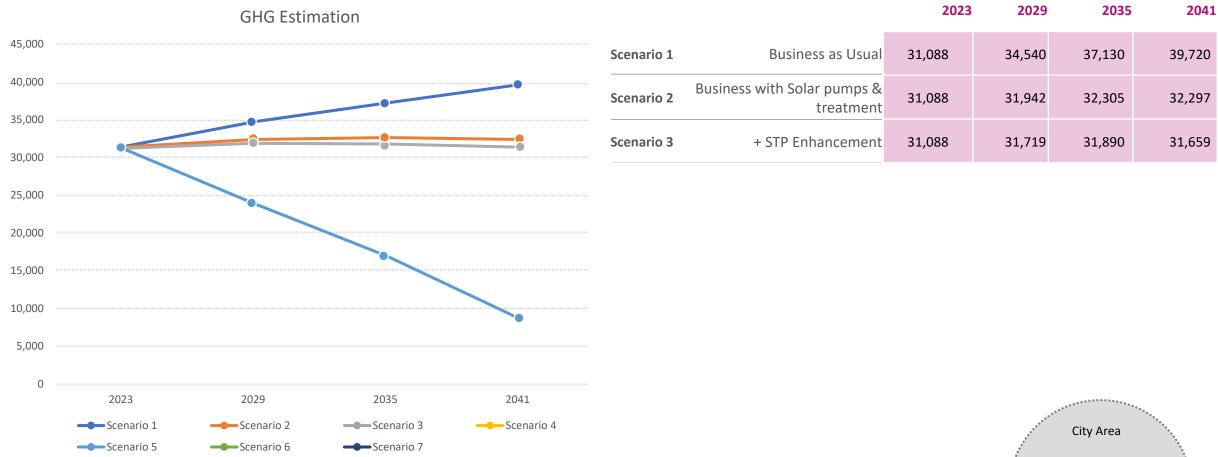
Bhubaneshwar has improved and expanded its water supply network efficiency for reducing NRW.


Scheduled Desludging through the PPP model by dividing the city into 3 zones, and each zone is


POSSIBLE IMPROVEMENT MEASURES

*All values are in tCO₂eq

*All values are in tCO₂eq


Required

A REAL PROPERTY OF THE REAL PR

2023 2029 2035 2041 **GHG** Estimation 45,000 Scenario 1 **Business as Usual** 31,088 34,540 37,130 39,720 40,000 Business with Solar pumps & Scenario 2 31,088 32,305 32,297 31,942 treatment 35,000 30,000 25,000 20,000 15,000 10,000 5,000 0 2023 2029 2035 2041 Scenario 2 Scenario 1 Scenario 3 ----- Scenario 4 City Area Scenario 5 Scenario 6 Scenario 7

*All values are in tCO₂eq

*All values are in tCO₂eq

----- Scenario 5

Scenario 6

Scenario 7

2023 2029 **GHG** Estimation 45,000 Scenario 1 **Business as Usual** 31,088 34,540 37,130 40,000 Business with Solar pumps & Scenario 2 31,088 32,305 31,942 treatment 35,000 + STP Enhancement Scenario 3 31,088 31,719 31,890 30,000 Scenario 4 + Scheduled Desludging 31,088 23,742 17,020 25,000 20,000 15,000 10,000 5,000 0 2023 2029 2035 2041 Scenario 1 Scenario 2 Scenario 3 ----- Scenario 4

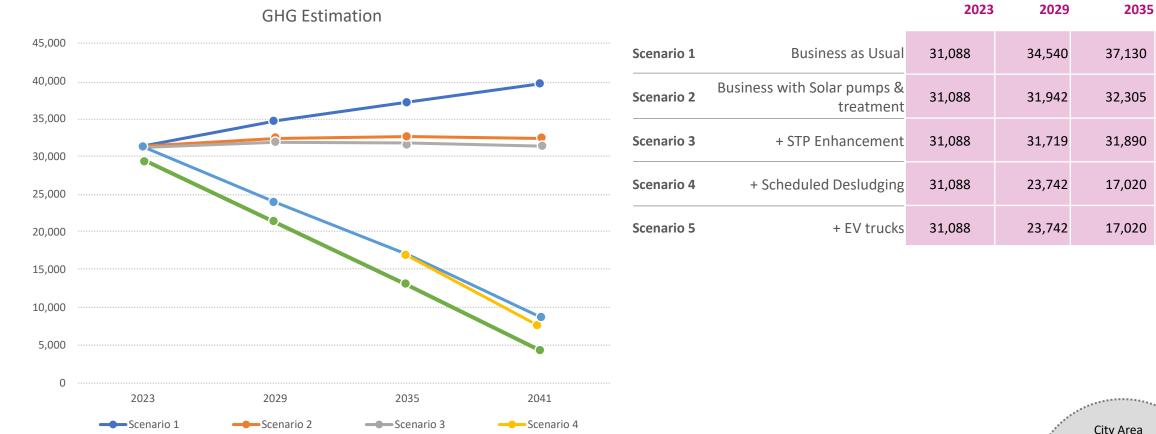
*All values are in tCO₂eq

2035

2041

39,720

32,297


31,659

8,746

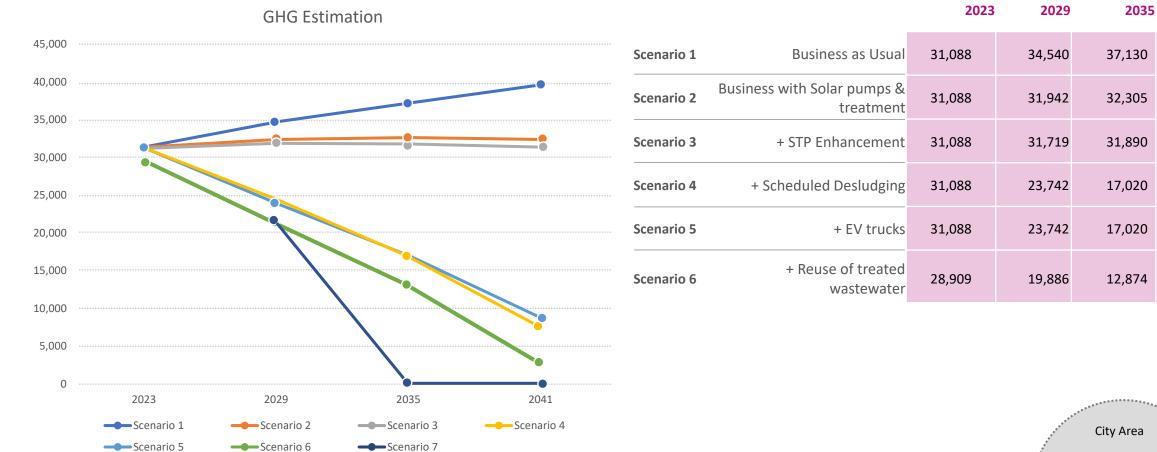
----- Scenario 5

Scenario 6

Scenario 7

*All values are in tCO₂eq

2041


39,720

32,297

31,659

8,746

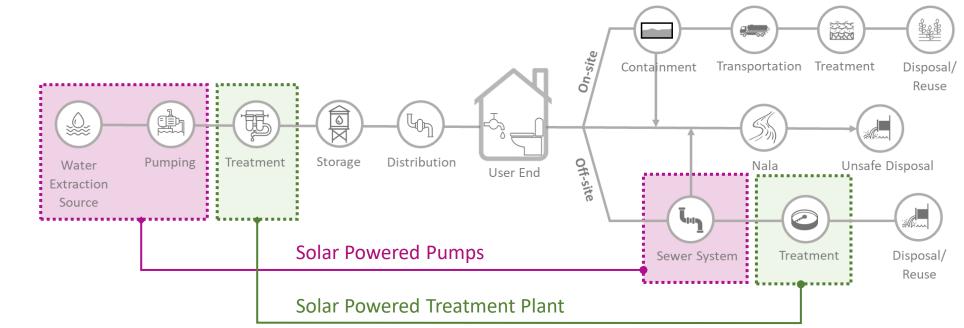
8,680

*All values are in tCO₂eq

2041

39,720

32,297


31,659

8,746

8,680

4,245

PROPOSAL

	Water Abstra	Sewer Pump			
	Majarewadi	Takawade			
Total yearly unit consumption (kWh/year)	60,20,864	14,74,982	4,03,276		
Unit Consumption per MLD	458	55			
Projected water abstraction MLD	51	13	51.2		
Projected Consumption	22.250	22.250 5.027			

	WTP	STP
	45 MLD	20 MLD
Total yearly unit consumption (kWh/year)	29,53,982	10,73,899
Per MLD Consumption (kWh/MLD)	180	147
Projected treatment	64	51.2
Projected Consumption	11 520	7 527

at a	2023 10%	2029	2035	2041
nts	10%	35%		
			65%	
				100%
1. Solar-based	Area Identification	Installation of +777 Panels =	Installation of +929 Panels =	Installation of + 1,087 Panels = ₹ 13.1 crore
pumps and treatment plants	Installation of 310 Panels = ₹ 3.8 crore	₹ 9.4 crore	₹ 11.2 crore	< 13.1 crore
•	Refurbishment of existing STP	Project Completion	New STP: Under- Capacity Function (11 MLI	New STP: Full Capacity D) Function (15 MLE
2. STP Enhancement	Project Approval	New STP: Under-Capacity Function (8 MLD)		
	Construction start in 2024			
3. Scheduled	Desludging Plan Ward wise	+5 trucks to be deployed	8 trucks to be deployed	10 modifies EV tr to be deployed
Desludging & EV trucks	A pilot project in a Ward	- Emission from S + Emission from		nission from Septic tank nission from trucks
4. Wastewater Reuse	Reusing wastewater-	Reusing wastewater –	Reusing wastewater –	Reusing wastewater –

IMPLEMENTATION

Total Energy Required in Water Abstraction, Pumping and Treatment 2041: Demand 64 MLD

Majarewadi	Panchganga	Water Treatment Plant
23,358 kWh	5,837 kWh	11,520 kWh
No. of Panels 1,465	360	720

Total Energy Required in Sewer Pumping and Treatment 2041: WW generated 51.2 MLD

Takawade 2,816 kWh	Sewage Treatment Plant 7,527 kWh	
No. of Panels 88	470	

Electricity produced by 2kW solar Panel in a day (8 hours) = 16kWh

Total number of panels = 3,103

Cost of 1 Panel (2 kW) in Maharashtra = ₹1.2 Lakhs

Total Cost of Installation - ₹ 37.5 crore

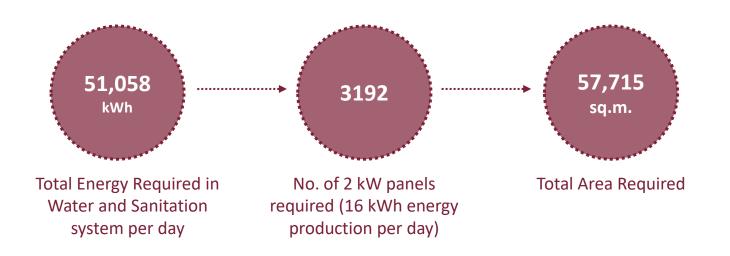
2023	2029	2035	2041
10%			
	35%		
		65%	
			100%
Area Identification	Installation of +777 Panels =	Installation of +929 Panels =	Installation of +1,087 Panels =
	₹ 9.4 crore	₹ 11.2 crore	₹ 13.1 crore
Installation of			
310 Panels =			
₹ 3.8 crore			

IMPLEMENTATION

Total Energy Required in Water Abstraction, Pumping and Treatment 2041: Demand 64 MLD

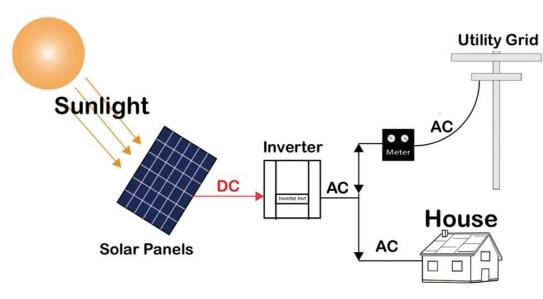
Panchganga 5,837 kWh	Water Treatment Plant 11,520 kWh	2
		N
360	720	8
	5,837 kWh	5,837 kWh 11,520 kWh

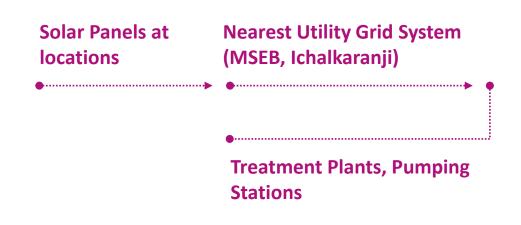
Total Energy Required in Sewer Pumping and Treatment 2041: WW generated 51.2 MLD


Takawade	Sewage Treatment Plant
2,816 kWh	7,527 kWh
No. of Panels 88	470

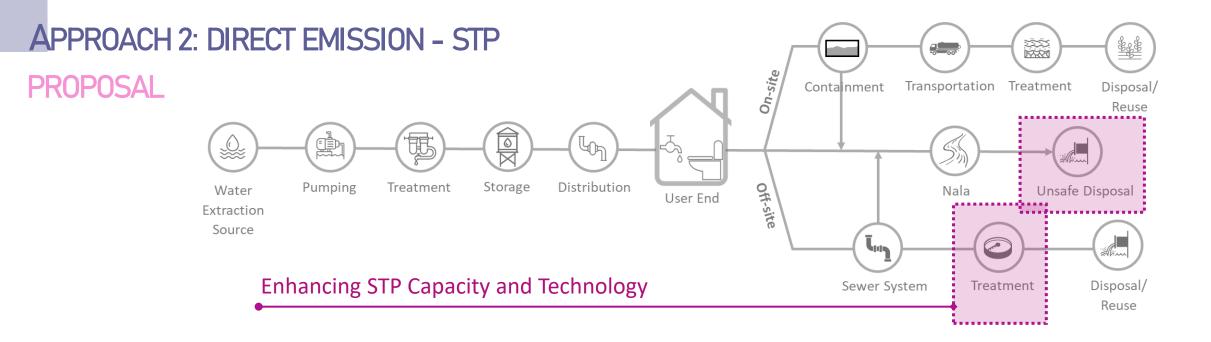
Electricity produced by 2kW solar Panel in a day (8 hours) = 16kWh

> Total number of panels required = 3,192


Cost of 1 Panel (2 kW) in Maharashtra = ₹1.2 Lakhs Total Cost of Installation - **₹ 37.5 crore**


IMPLEMENTATION

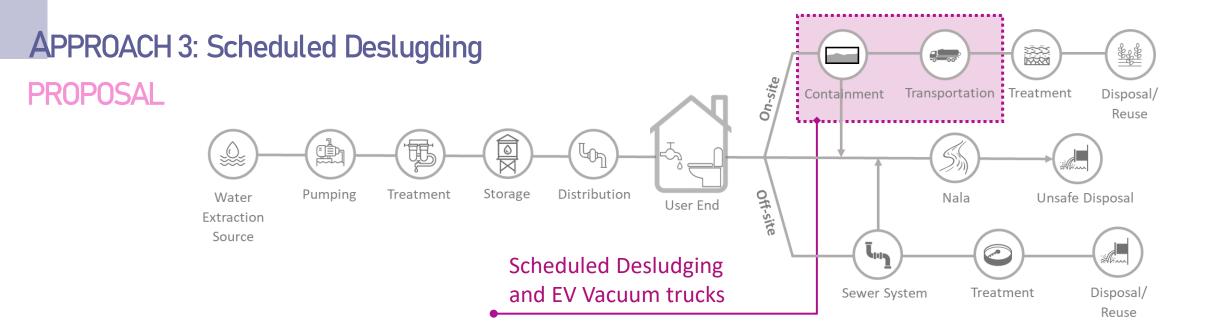
Installations on WTP buildings, Stadiums, STP, and other Government Buildings


On-grid Commercial Solar Plant

FINANCIAL BENEFITS

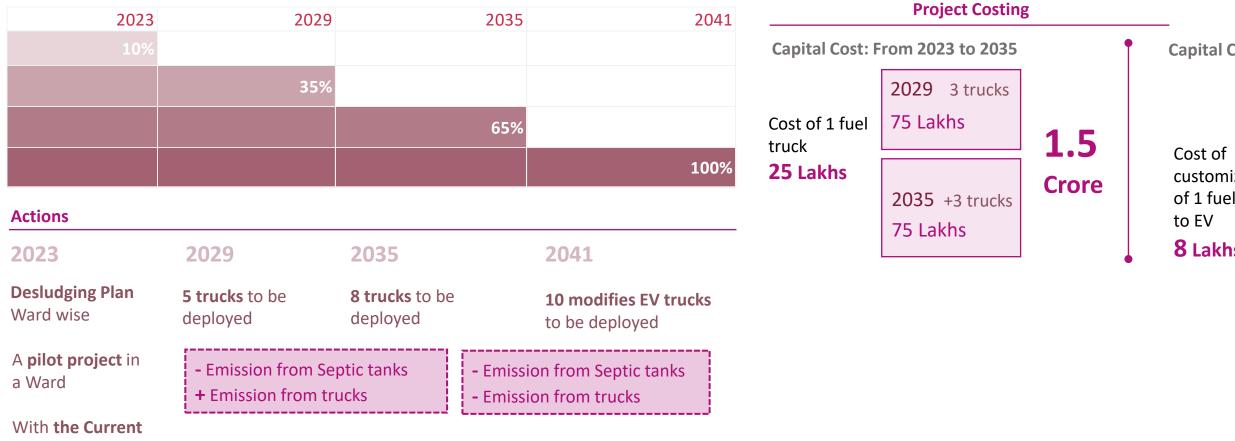
Total number of panels required = 3,192	Cost of 1 Panel (2 kW) in Maharashtra = ₹1.2 Lakhs	Total Cost of Installation - ₹ 37.5 crore
Electricity Expenditure FY 2021-22 9.4 Crore	Total Electricity Expenditure till 169 Crore	2041 Capital Cost of Solar-based Energy till 2041 projection 37.5 Crore
		n 18 years) Crore

1		(Criteria	ASP	UASB+ASP	SBR	MBBR	MBR	WSP
	Existing		D I	Performance in Terms of Quality of Treated Sewage						
	LAISTING		Proposal	Potential of Meeting the RAPs TSS, BOD, and COD Discharge Standards						
				Potential of Total / Faecal Coliform Removal						
				Potential of DO in Effluent						
				Potential for Low Initial/Immediate Oxygen Demand						
				Potential for Nitrogen Removal (Nitrification-Denitrification)						
Capacity of STP	20 MLD		15 MLD (16 MLD under	Potential for Phosphorous Removal						
		Consolty of CTD		Performance Reliability						
		Capacity of STP		Impact of Effluent Discharge						
			construction)	Potential of No Adverse Impact on Land						
			construction	Potential of No Adverse Impact on Surface Waters						
	Activated			Potential of No Adverse Impact on Ground Waters						
T	Activated			Potential for Economically Viable Resource Generation						
Type of treatment				Manure / Soil Conditioner						
.,	Sludge			Fuel						
	Jiuuge			Economically Viable Electricity Generation/Energy Recovery	1					
		Type of treatment	SBR	Food						
		Type of treatment	501	Impact of STP						
				Potential of No Adverse Impacts on Health of STP Staff/Locals						
Sludge Treatment	Drying bed			Potential of No Adverse Impacts on Surrounding Building/Properties						
Sludge Heatment	Di ying beu			Potential of Low Energy Requirement						
_				Potential of Low Land Requirement						
				Potential of Low Capital Cost						
		Sludge Treatment and	Anaerobic	Potential of Low Recurring Cost						
		Sludge Heatment and	Allaelubic	Potential of Low Reinvestment Cost						
				Potential of Low Level of Skill in Operation						
Biogas recovery	gas recovery No b		Digestor	Potential of Low Level of Skill in Maintenance						
Biogastecovery		biogas recovery	Digestor	Track Record						
				Typical Capacity Range, MLD	All Flows	All Flows	All Flows	Smaller	Smaller	All Flows
					- · · ·			· · · · · ·		

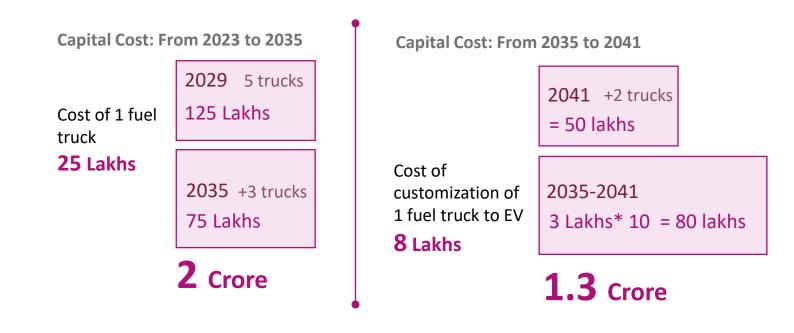

.ow Medium High Very High

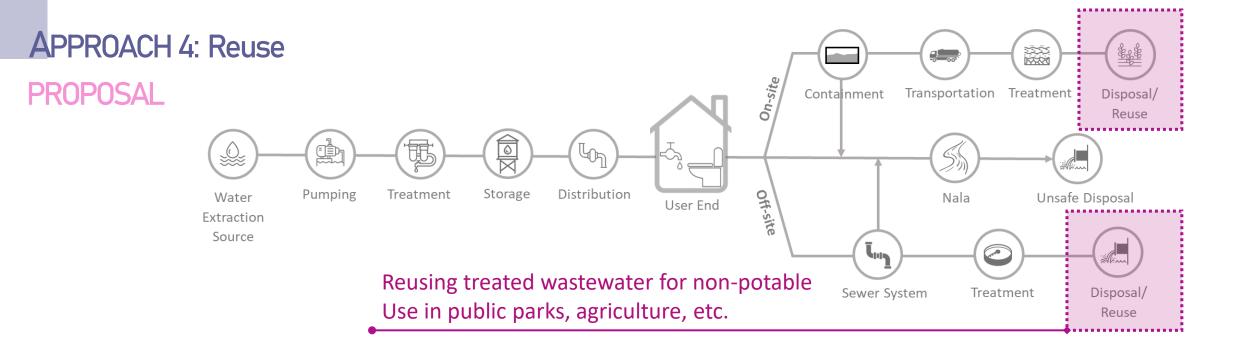
Source: NMCG, 2010, Sewage Treatment in Class I Towns: Recommendations and Guidelines (https://nmcg.nic.in/writereaddata/fileupload/16_31_003_EQP_S&R_02.pdf).

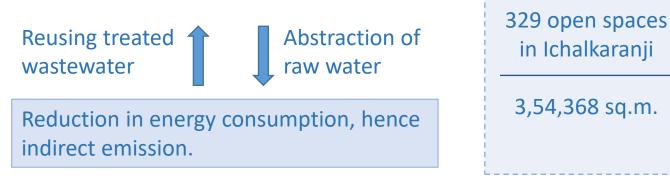
APPROACH 2: DIRECT EMISSION – STP IMPLEMENTATION


start in 2024

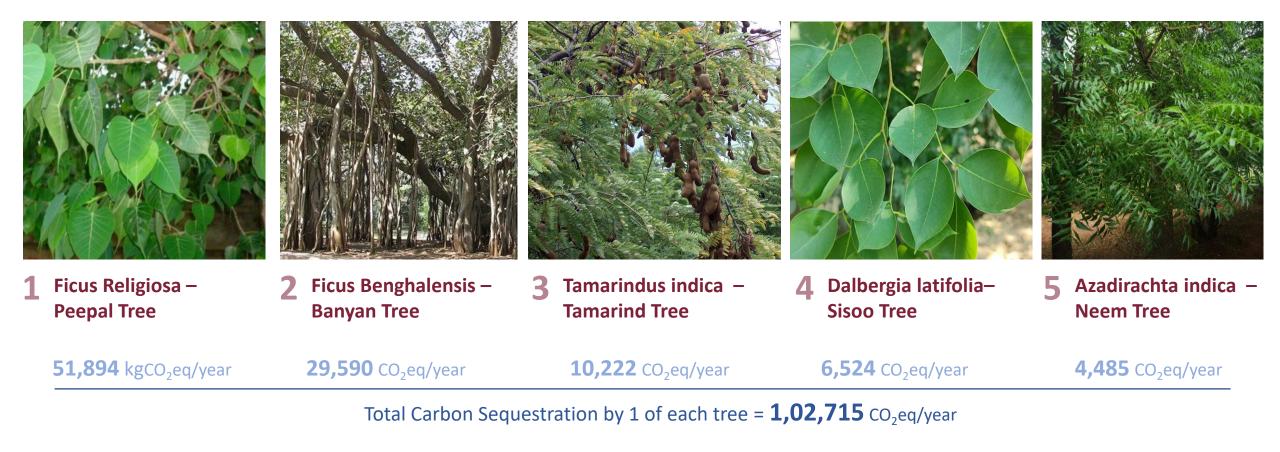
2023	3 2029	9 2035	2041	Project Costing		
10%	6			Capital Cost of SBR S		
	359	65%	100%	Cost of 1 MLD 1.25 crore	Cost of 15 MLD 18.75 crore	
Actions 2023	2029	2035	2041	Capital Cost of Bioga	s Digestor	
Refurbishment of existing STP	Project Completion	New STP: Under- Capacity Function (11 MLD)	New STP: Full Capacity Function (15 MLD)	Cost of 600 KLD 3 crore		
Project Approval	New STP: Under-Capacity Function (8 MLD)	()	,	Total Project Cost	21.75 crore	
Construction	. ,					


	Existing		Proposal		Proposal
Current No. of Trucks	2	Projected No. of Septic Tanks in 2041	37163	Total quantity of sludge to be removed everyday	111 KL
No. of septic tanks desludged every day	4	Periodic Desludging	Every 3 year	 No. of trips per truck	3
Amount of sludge removed per septic tank	2500 L (2.5 KL)	No. of septic tanks to be cleaned every year	12,388	 Sludge removed by 1 Truck in 3 trips	3*4000 L (12000 L)
Capacity of trucks	4000 L	No. of septic tanks to be cleaned every day	44 @ 280 working days in a year	No. of trucPks required	8-10 trucks


APPROACHES 3: DIRECT EMISSION – Scheduled Desludging IMPLEMENTATION


No. of trucks

APPROACHES 3: DIRECT EMISSION – Scheduled Deslugding IMPLEMENTATION



APPROACH 4: Carbon Sequestration PROPOSAL & IMPLEMENTATION

x **125** Total number of plants (~ **25** each plant) for sequestrating remaining GHG from 2035 to 2041 after implementing all proposals.

Source: Sahu C., Sahu S., Nayak H., 2020, Carbon Sequestration Potential of Trees in an Urban Area: A Case Study of Sambalpur Town in Eastern India

PROJECT FUNDING

Α.

Solar Based Pumps and plants	treatment STP		EV trucks	Plantation
National Solar Mission Clean Energy Fund Majhi Vasundhara CSR	SBM 2.0 PPP Model	National E fund PPP Mode MEDA	Electric Mobility el (O&M)	Majhi Vasundhara
B.	Registering Projects under Carbons CDM for Carbon credits till 2041	Credits Generated	84 Crore	
Aus	rbon Trading Markets for Listing Carbon cre tralian ETS Europe ETS 37 AUD 68-98 EURO	New Ze	aland ETS USD	California ETS 8 USD

THEORY OF CHANGE

Input	Output	Outcome	Impact
 Energy Audits Solar Powered Pumps and Treatment Plant STP Refurbishment STP Capacity Enhancement 	Energy Efficient Machineries Energy Transition Financial Sustainability Well Managed Treatment Plants Reduced discharge of untreated wastewater to water bodies	Reducing Energy Consumption Reducing Dependency on Coal- produced Electricity Lower organic concentration/ pollution in water bodies Clean Energy for Reuse	Reducing direct and indirect GHG emissions from WASH
 Biogas Recovery at STP Scheduled Desludging EV Trucks 	Methane Capture Periodic cleaning: Lesser sludge amount in septic tanks Energy Transition	Reduced effluent discharge Reduced emission from tanks Reduced use of oil-based energy	services
 Reusing Treated Wastewater Tree Plantation 	Reduced Dependency and abstraction of fresh water Carbon Sink	Reduced Energy Consumption in raw water abstraction Mitigating GHG emission	

THEORY OF CHANGE

Actions/Projects	Stakeholder/Institution	Financing Option	Business Model
Energy Audits	IMC & Private Company	Private	Private
 Solar Powered Pumps and Treatment Plant 	IMC, MSEB, Private Agency	National Solar Mission, CSR	PPP model - BOT
STP Refurbishment			• PPP – Built & Transfer
STP Capacity Enhancement	IMC, Private Agency	• SBM 2.0	• PPP - BOT
Biogas Recovery at STP			• PPP - BOT
Scheduled Desludging			Private
• EV Trucks	IMC & Private Agency	 National Mobility Fund, MEDA 	Private - O & M
Reusing Treated Wastewater	• IMC	IMC budget	• IMC
Tree Plantation	IMC & Majhi Vasundhara	IMC budget	IMC - Contract

Thank You